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The problem of finding the number of natural frequencies of a structure 

which lie within a given interval arises in connection with the study 

of the vibrations of structural elements under random loads having a 

wide spectrum [II. Courant 131 considered this problem for membranes 

and plates. The problem is solved below for thin elastic shells whose 

vibrations can be described by equations valid for cases with large 

index of variation [31. 

1. We shall consider a thin elastic shell of thickness h referred to 

orthogonal curvilinear coordinates rl and x2 which coincide with the 

1 ines of principal curvature. Let R, and R, be the radii of curvature 

of the middle surface, E the modulus of elasticity, p the density of the 

material, D the plate stiffness, w the normal deflection, p the stress 

function for the forces in the middle surface and w the frequency of 

vibration, The equations for modes of vibration having sufficiently high 

indices of variation are of the form t3? 

Tangential inertia forces are not taken into account in equations 

(1.1). Therefore, only the frequencies of predominantly flexural vibra- 

tions can be found from these equations. 

An asymptotic solution of equations (1.1) has been obtained [3,41 for 

a rectangular region (in the generalized sense) with sides al and a2 

within which the metric of the middle surface remains constant. The 

natural frequencies are determined from the formula 
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02 = $ [ (kf + ha)’ + (x = $) (1.2) 

where the wave numbers kl and k2 are found from the solution of the 
system of equations 

klal = tan-’ ~11 (kl, ks) + tan-’ JIB (kl, kd + ~111 

ksaa = tan-’ USI (kl, 4) + tan-’ ws (kl, ka) + w (ml, mz = 1, 2, . . .) (1.3) 

Here u 
053 

are functions of the wave numbers and depend on the boundary 
conditions. By the functions tan -l “4 the principal values are meant. 
The solution (1.2) and (I. 3) is always applicable except when the dynamic 
edge effect is degenerate. We have shown L3.41 that for plates and 
spherical shells the dynamic edge effect never degenerates and the de- 
generacy occurs for cylindrical shells only for sufficiently small wave 
numbers 

For very large wave numbers (k12 + k22 w hS2), 

(1.1) are no longer applicable since effects like 
rotatory inertia must then be taken into account. 
the cruder estimates 

. klal = mgc + 0 (1), kaar = mm -!- 

can be derived. These are analogous 

0 (1) (ml, 

the original equations 
shear deformation and 
From formula (1.3), 

rnz = 1, 2, . . .) (1.4) 

to the well-known estimates of 
Courant [21 for the natural frequencies of membranes and plates. It is 
essential to realize that the estimates (1.4) are valid only outside the 
range of degeneracy of the edge effect. This will be clear if it is re- 
called that from the physical point of view degeneracy implies a large 
effect of conditions at the edge on the mode shape within the region. 

Let us construct the two families of curves (1.3) corresponding to 

various integral values of .wl and m2. The wave numbers are found as the 
coordinates of the points of intersection of these curves. If the shell 
is simply supported at its edge, all the u$ = 0. We then obtain a grid 
of straight lines parallel to the coordinate axes consisting of cells 
of dimensions Akl = r/al and Ak, = m/a2 (in this case the asymptotic 
solution coincides with the exact one). It follows from the relation 
(1.3) that, in general, a change of the boundary conditions cannot dis- 
place the curves by more than the dimensions of one cell. This is also 
reflected in the formulas (1.4). 
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2. We shall now apply the relations (1.2) and (1.4) to obtgin esti- 
mates of the density of distribution of the natural frequencies. Using 
an idea of Courant [23, we shall determine approxinately the number of 
frequencies N(R) smaller than a given fre- 

quency !J as the ratio of the area on the 
k,, k2 plane in which the inequality o( k,. 

kq) < R holds to the area of a single cell. 
It is apparent that this method of calcula- 
tion becomes more reliable as the number of 
wave numbers lying in the region S (Fig. 1) 
bounded by the curve ofkl, k,) = 9 in- 
creases. We then have the formula 

IV (8) = i\klAk 
1 2 

Using the notation 

k12 + ka2 = rz* kz=&l 
kx 

9 

Equation (1.2) can be 

02 =L 

cs dkldkz (2.1) 

“s 

written in the form 

Fig. 1. 

From this result, after substitution into (2.1) and integration with 

respect to r, we obtain 

e,(n) 

N (f4 ~~(2L)‘i. \ [SP- $2,” (X cos2tl + sin2 9)2f’ird8 

O,(Q) 

The integration with respect to 6 is carried out over that 

@.41 

part of 

the quadrant 0 <C <w/2 in which the expression under the radical is 
positive. Differentiating the expression (2.4) with respect to R, wf? get 
an asymptotic formula for the density of the frequency distribution 

We now introduce the notation 

e,(a) 

H(a,x)=1- 5 11 
31 

- o‘J (x cosae + sina0)2J”Sd0 

e*(a) (a = J$) (2.6) 
e*(a) 

cl0 

--aa (X COSTED + sin29faf*‘” 

Formulas (2.4) and (2.5) take the form 
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3. We introduce the further notation 

_~____ - -.-- 
1 -t ax 

51 = ((1 y&-2’,,, I 52 = lf 2a (x - 1) 
q1.2 z a (1 - x), ’ (1 - 4 (1 + ax) 

By means of the substitution sin*6 = 5. the second of the integrals 

(2.6) can be reduced to the form 

El 

Hi @x,x) = 
1 

an II -x I s 
d5 

LX IE (1 - E) oil + E) h - E)l”’ 
(3.1) 

The integration is carried out over the part of the interval O<c<l 

in which the expression under the radical is positive. 

For x < 1 the following four cases are possible. 

a) ?l > 0, q2 < 1. In this case 61 = 0, c2 = 1 and formula (3.1) 

takes the form 

Hi (a I xl = 
x V/(1 +a) (1 - ax) 

K (51) (3.2) 
2 

where K(j,) is the complete elliptic integral of the first kind. 

b) ql > 0. q2 < 1. In this case <l = 0, g2 = q2 and, therefore 

f&b, xl = n ,a~f_x) K (Cl-9 (3.3) 

c) q1 < 0, q2 > 1. Here 61 = - ~1, c2 = 1; after some transformations 

we arrive at formula (3.3). 

d) rll < 0, q2 < 1. In this case 51 = - q , E2 = q2 and we obtain 

formula (3.2). 

Now let x > 1. Two cases are possible here: 

a) ax < 1. Then <l = 0, t2 = 1 and formula (3.1) gives 

H1 (o,x) = 
2 

-K (5~) 
n V(i --a) (1 + ax) 

b) ax > 1. Then cl = ql, Ej2 = 1. and, therefore 

HI (a, x) = 
I/a 

JrVa(x - 1) 
K (r;~-9 

(3.4) 

(3.5) 
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4. Two special cases deserve attention. For a spherical shell x = 1 

Fig. 2. 

and the integral (2.6) can be 

expressed at once in terms of 

elementary functions 

HI (a, 1) = G (a> 1) (4.1) 

Thus, the density of the fre- 

quencies is equal to zero for 

R < RR. It has a singularity 

for Q = $$ (in the present case 

RR is the minimum frequency of 

vibration), The density of the 

frequency distribution rapidly 

approaches the density for the 

corresponding plate for R >> RR. 

In the case of a cylindrical 

shell (x = 0) we find, in 

accordance with formulas (3.2) and (3.3) 

&(a, 0) = 2 K (r/-z) nl/l+a (a<11 
(4.2) 

HI(~, 0) = 

The results of calculations based on formulas (4.1) and (4.2) are 

shown in Fig. 2. 
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